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Abstract 

The contribution of the associated steps to the 
properties of grain-boundary dislocations are investi- 
gated. Two methods of step-height determination are 
given and it is shown that the step height, like the 
Burgers vector, must be conserved during the reactions 
of grain-boundary dislocations: this is not always auto- 
matic and additional coherent steps must take part in 
some reactions. The energies associated with steps have 
been estimated and compared with the elastic energies 
of grain-boundary dislocations; these comparisons 
suggest that (a) the reduction of elastic energy alone 
may not be a sufficient criterion for the progress of a 
reaction and (b) that arrays of dislocations may reduce 
their energy by containing dislocations embodying 
steps of varying height. 

1. Introduction 

It has been suggested that grain-boundary dislocations 
(g.b.d.'s) may be responsible for grain-boundary sliding 
(Crussard & Tamhankar, 1958), grain-boundary mi- 
gration (Smith & Rae, 1979) and the absorption or 
emission of point defects by grain boundaries (Ashby, 
1969). The linking of these processes has also been 
postulated (Pond & Smith, 1976) and it is the purpose 
of this paper to explore in detail the possible corre- 
lations and their consequences. 

It is clear that climb and glide of g.b.d.'s must be 
interdependent in any case where the Burgers vector of 
a g.b.d, is neither parallel nor perpendicular to the 
grain-boundary plane, since the motion by pure climb 
or pure glide of such a dislocation would move it out of 
the boundary plane. The motion of g.b.d.'s (by glide- 
plus-climb) may also be linked to boundary migration if 
steps in the boundary plane are associated with the 
cores of the g.b.d.'s. Such steps arise in coincidence or 
off-coincidence boundaries because the grain-boundary 
structure must remain unchanged by the passage of a 
g.b.d, if it is perfect, and yet a property of such a g.b.d. 
is to shift the origin of the coincidence-site lattice 
(Bollmann, 1970). In general, the only way in which a 

grain boundary can have the same structure on either 
side of the g.b.d, is for the boundary plane to move to a 
different level at the dislocation core. 

2. Relationship between g.b.d, and boundary plane 

All the correlations between grain-boundary processes 
which have been proposed are direct results of the 
relationship between a g.b.d, and the grain-boundary 
plane in which it lies. For the purposes of this paper, we 
consider only planar grain boundaries (except where a 
step is introduced with a g.b.d.) and we further presume 
that g.b.d.'s can only move in the grain-boundary 
plane: i.e. we assume that the band of stacking faults 
which would be created by the motion of a g.b.d, away 
from its boundary plane is of such a high energy in all 
cases as to prevent such motion. 

For convenience in defining grain-boundary planes, 
we use the vector n which lies perpendicular to the 
boundary plane which it defines and points from grain 
1 into grain 2. The Burgers vector of a g.b.d, may be 
parallel or inclined to the grain boundary plane. It is 
useful to differentiate three cases: 

(i) Where b lies perpendicular to n. Dislocations of 
this type may glide in the boundary but cannot climb 
unless the boundary migrates. 

(ii) Where b lies parallel or antiparallel to n. In this 
case, the dislocation can climb in the boundary but 
cannot glide unless the boundary migrates. 

(iii) Where b lies at an arbitrary angle to n. For this 
configuration the dislocation can move neither by pure 
glide nor by pure climb, in the absence of boundary 
migration, since either type of motion will move it away 
from the grain boundary. This is the most general 
configuration and such dislocations must move by a 
glide-plus-climb mechanism. 

A g.b.d, with its Burgers vector at an angle ~0 to the 
boundary plane may be considered to glide a distance 
x cos ~p and climb a distance x sin ~0 for every distance 
x which it moves along the boundary plane. Alter- 
natively, the dislocation may be considered as resolved 
into inseparable components, b cos ~ of which glides 
and b sin ~0 of which climbs in the boundary plane. 
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Fig. 1 demonstrates the effect of a dislocation in 
displacing the origin of the coincidence-site lattice 
(CSL): Fig. l(a)  shows four unit cells of the X = 5 
(36.9°/[100])  CSL constructed for two f.c.c, lattices. 
In this system, a DSC lattice vector, any of which is a 
possible Burgers vector for a perfect g.b.d., is b = 
(a /10)[031] ,  (a/10)[03[]2, where the subscripts refer 
to the crystal lattice in which the vector is defined. If 
lattice 2 in Fig. l(a) is displaced by this vector with 
respect to lattice ,1, we achieve the pattern shown in 
Fig. l(b): the coincidence pattern has been recreated in 
a different position and for a boundary which was 
originally at A to have the same structure after the 
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Fig. 1. (a) Four unit cells of the CSL for the Z = 5 coincidence 
system in f.c.c, crystals. Filled symbols are lattice 1, unfilled ones 
lattice 2. The symbols A represent sites which are out of the page 
by (a/2)[100] and the symbols x represent O-lattice elements 
which do not correspond to crystal-lattice sites. (b) Obtained 
from (a) by displacing lattice 2 by b r Old coincident sites are 
marked with surrounded symbols and old non-lattice O-elements 
are marked with small crosses. 

displacement of  the lattices, it could move to B, C, D or 
E. {The structures on the planes B and D are identical 
to those on C and E, but shifted along the tilt axis by 
(a/2)[ I001.} 

The sites in Fig. 1 are shown as lattices (i.e. fully 
interpenetrating and extending to infinity): only the 
sites of lattice 1 are occupied by atoms on one side of 
the boundary and sites of lattice 2 on the other side, for 
a real grain boundary. For a pair of semi-infinite grains, 
there is an infinite number of geometrically equivalent 
positions for the replaced boundary after displacement 
of lattice 2 by b. They may all be described as the smal- 
lest possible movement of the boundary plane plus or 
minus a coherent step, a coherent step being defined as 
a step on the grain-boundary plane of height N times 
the CSL periodicity parallel to n, where N is an integer. 

The problem of accurately determining the height of 
the step associated with a g.b.d, is important in the 
analysis of any process in which grain-boundary dislo- 
cations are thought to play a role. Two methods will be 
given: geometrical construction and calculation follow- 
ing Pond (1977), which is extended and generalized 
here. 

2.1. Step height by construction 

Consider again Fig. 1. We can construct a vector 
from an old coincidence site to a new one. This will be 
called a step vector, s. By convention, lattice 1 is kept 
stationary while lattice 2 is displaced by b. In this case 
the step vector is measured with respect to lattice 1 and 
is called s tl). It is physically equivalent to keep lattice 2 
stationary while displacing lattice 1 by - b .  In this case, 
s measured with respect to lattice 2 is s tz). The step 
vectors are related by 

s (1) = s (2) + b.  ( 1 )  

This is illustrated in Fig. 2. There is an infinite 
number of choices of the step vector in either reference 
lattice, but they are all related by the addition of CSL 
vectors c: we may therefore arbitrarily choose the 
shortest step vector, s tar, where a is either 1 or 2. Any 
step vector is then given by 

s ta) = s t a r +  e. (2) 

The height of  the step associated with the dislo- 
cation is now simply 

ha = s (") . na. (3) 

The shortest step vector does not necessarily give the 
smallest step height. Also, the step height as measured 
in lattice 2 differs from the step height as measured in 
lattice 1 since 

h i  = s t~ ) .  n I 
(4) 

h 2 = (s (2) - b ) .  n2. 
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The difference in step heights as measured with 
respect to lattices 1 and 2 is thus 

Ah = b .n ,  (5) 

i.e. the climb component of  the Burgers vector: this is a 
reasonable result, since, if we resolve the Burgers vector 
of an edge dislocation parallel and perpendicular to the 
grain-boundary plane, we essentially have two half- 
planes of extra material, one of which represents the 
climb component of the dislocation and lies parallel to 
the boundary plane. This extra material may  be 
associated with either grain 1 or grain 2, which there- 
fore has a step on its surface equal to the height of the 
step on the other grain plus the thickness of the layer of 
extra material, which is b .n .  The difference in step 
heights is thus a real effect which would be manifested 
by cutting a bicrystal containing a g.b.d, along the 
boundary plane: the surfaces thus revealed would have 
stress-free steps of height h~ on crystal 1 and h 2 on 
crystal 2. 

As an example, consider Fig. 3 which shows a dislo- 
cation of Burgers vector (a/10)[0i3]~ in a 27 = 5 grain 
boundary lying on a (012)~(021) 2 plane passing 
through coincidence sites. The choice of a plane 
passing through coincidence sites gives us a useful 
reference s ta te- - i t  does not imply that atoms actually 
occupy coincidence s i tes - -and  a translation away from 
this position, provided it was conserved on either side 
of the dislocation, would not change the result of the 
analysis. 

The step vectors used in the construction of Fig. 3 
are 

a 
s u) = - [ 1 1 0 1 ~ ,  

2 

a 
s (~) = - [ 1 1 0 ]  v 

2 

These are the vectors which join the first and last 
coincidence sites on either side of the g.b.d., in the 

boundary plane. In order to get the step height as a 
number of planes parallel to the grain boundary, we 
define n as the reciprocal-lattice vector corresponding 
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Fig. 3. Two pictures of the same dislocation: (a) with DSC lattice 
lines drawn in to emphasize the extra half-plane; (b) with lines 
drawn parallel and perpendicular to the boundary plane to 
emphasize the step. (Coincident lattice sites are filled.) 
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Fig. 2. Construction of step vectors, s u) and s (2) in the X = 5 system: (b) is obtained from (a) by displacing lattice 2 by bl; (c) is obtained 
from (a) by displacing lattice 1 by - b  r 
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to the lattice planes parallel to the boundary. Thus, 

n 1 = [ 0 2 4 1 1 ,  

n 2 = [042]2, 

which gives 

h I = 1 (024)1 plane, 

h 2 = 2 (042) 2 planes. 

These steps are clearly seen in Fig. 3(b) where planes 
are drawn parallel and perpendicular to the grain boun- 
dary to emphasize the steps and illustrate that the dif- 
ference in step height is indeed the climb component of 
the g.b.d. 

In cases where the boundary plane is parallel to a 
rational plane of the CSL, many of the step vectors 
give rise to identical step heights: for example, in Fig. 2, 
sl and s 3 give the same step height for a boundary lying 
on the (012)1(021) 2 plane. 

Bollmann's (1970) work on shifts of the coincidence 
pattern is in terms of the O lattice, rather than the CSL: 
the O lattice takes in coincidences between non-lattice 
sites of identical internal coordinate as well as 
coincident lattice sites. The use of step vectors joining 
old and new O-lattice elements does not generally give 
the correct answer for the step, although under special 
circumstances it will do so: this only occurs when the 
boundary plane under consideration lies parallel to 
planes which run through coincident lattice sites and 
non-coincident site O-lattice elements without a step. In 
the Z = 5 example given above, this condition is 
fulfilled, for example, for the (031) 1, (0i3)1 and (100) 
planes; in other cases the step height found by the O- 
lattice technique is half  of that found by the CSL 
technique, because there is always a plane of non- 
coincident site O-elements between each pair of planes 
containing coincident sites. The O-lattice technique 

does not distinguish between the two types of O 
element, and stepping from a plane containing one type 
to a plane containing the other will cause a change in 
structure. 

2.2. Step height by calculation (in-plane translation 
analysis) 

Pond (1977) has given a method for finding the 
possible step heights by calculation, utilizing an 
approach different from that outlined above, but which 
was only developed for the case where b lies in the 
boundary plane. For this case, Pond found 

= b + n ml, (6) 

where ~ is a lattice vector lying in the boundary plane, 
b is the Burgers vector of the dislocation under 
consideration, ml is an in-plane translation vector 
equivalent to displacing the boundary plane by one 
layer and n is the number of layers parallel to the 
boundary which the step comprises. By allowing all 
possible in-plane lattice vectors, we get all the possible 
step heights. When he developed this technique, Pond 
(1977) stated that for Burgers vectors perpendicular to 
the boundary plane, the extra material could, in 
principle, be accommodated by symmetrical relaxation. 
This is only true, however, when the extra material 
exists as an even number of crystallographic half- 
planes, such as in the X = 5 ease where a Burgers 
vector of (a/10)[310] comprises two (620) half-planes. 
In cases where there is an odd number of half-planes, 
we must create an asymmetrical step. The in-plane 
translation analysis for this ease will be illustrated by 
reference to the X = 11 coincidence system which is 
created in cubic lattices by a rotation of 50.48 ° about a 
common [ 110] axis. A possible Burgers vector in a f.c.c. 
X = 11 grain boundary is (a/11)[11311 and Fig. 4 
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Fig. 4. (a/11)[1 [31t dislocation in a (1 [3), I = 11 grain boundary between two f.c.c, crystals. 
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shows this dislocation in a (1i3)1 boundary at the 
coincidence position. The dislocation comprises one 
extra (1 i3)1 half-plane. 

The effect of inserting the extra half-plane of atoms 
just above the boundary plane (in grain 2) is to 
translate the rest of  crystal 2 to the right by i 2 
(following Pond's notation). This translation is 
analogous to the translation due to the Burgers vector 
of the g.b.d, in the in-plane Burgers vector case, so we 
can write 

I ~ / =  i 2 + n m 2. (7) 

For the example shown, i: = (a/22)[99~]], m2 = 
(a/11)[996] and ~ = (a/2)[332] which gives n = 5 _+ 
11N. The + 11 N, where N is an integer, accounts for 
other geometrically correct possibilities allowed by 
considering integer multiples of ~ .  Note that n is the 
number of planes by which the boundary is displaced in 
addition to the inserted extra half-plane, so the total is 6 
+_ 11N for crystal 2 and 5 + 11N for crystal 1. The dif- 
ference in step heights is, in this case, the Burgers 
vector of the g.b.d. 

We now have two techniques for determining the 
possible step heights associated with g.b.d.'s: they are 
different in approach but both yield the same result if 
correctly applied. The techniques are compared  from 
the point of view of the user in Table 1. 

We can now generalize to some extent about the 
nature of the step which may be associated with the 
various types of g.b.d, which were described above. For 
this purpose we are concerned with the stress-free steps 

Table 1. Comparison of  the two techniques for finding 
step heights associated with g.b.d.'s 

CSL construction 

Demands knowledge of entire 
CSL unit cell. (May be 
awkward for large values of 
,r.) 

May be readily applied to any 
g.b. plane once step vectors 
found. 

Specific to Burgers vector: must 
be reconstructed for new b. 

One-step process for any angle 
between b and n. 

Can be adapted for non-rational 
planes. 

In-plane translation 

Demands knowledge of entire 
boundary-plane periodicity. 
(May be awkward for high- 
index planes, even for low Z.) 

Specific to boundary plane: 
must be recalculated if plane 
changes. 

May be readily applied to any 
Burgers vector on a specific 
plane. 

Two-step process for general 
angles between b and n. 

Works only for rational planes. 

which would be revealed by cutting a bicrystal along 
the boundary plane. The possible step forms are: 

1. No step on either crystal. 
2. Equal step on each crystal (g.b.d. motion displaces 

the boundary plane). 
3. Equal but opposite step on each crystal (g.b.d. 

motion does not displace the boundary plane, but 
moves grain centres toward or away from each other). 

4. Unequal steps on each crystal (g.b.d. motion 
displaces the boundary plane and grain centres have a 
component of  motion toward or away from each 
other). 

4a. As 4 but one of the crystals has no step. 
The step forms and dislocation natures which may 

be associated with the various types of dislocation are 
summarized in Table 2. 

Step form 1 is a special case which may be asso- 
ciated with some variants of step form 2 as step forms 3 
and 4a are special cases of step form 4. A step of form 
1 is always transformed to a step of form 2 by the 
addition of a coherent step and forms 3 and 4a are 
always transformed to 4 by the same process. 

3. React ions  o f  gra in-boundary dis locat ions  

Grain-boundary dislocations have many of the pro- 
perties of crystal-lattice dislocations and some of the 
rules governing their reactions can be inferred directly 
from those for crystal-lattice dislocations, e.g. the 
conservation of Burgers vector. In addition to the 
condition that the Burgers vector is conserved at a 
dislocation node, in grain boundaries we have the ad- 
ditional condition that the total step in the boundary 
plane must be conserved: this is illustrated in Fig. 5 and 
can be proved by use of the in-plane translation 
analysis. Consider two dislocations with Burgers 
vectors b a and b b, and for convenience have them both 
lying in the boundary plane, so (6) applies: 

b~t a = b a + n a ml, (i) 

~b = bb + n b  m r  (ii) 

Table 2. Step forms and dislocation natures which 
may be associated with various types of  g.b.d. 

G.b.d. description Step forms allowed Dislocation natures 

b parallel to n 3, 4, 4a Edge 
b perpendicular to n 1, 2 Edge, mixed, screw 
b at angle to n 4, 4a Edge, mixed 

Fig. 5. Schematic illustration to show that steps on the grain- 
boundary plane must be conserved for topographical reasons. 
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If the two dislocations react together forming the 
Burgers vector b s, then adding (i) to (ii) describes this 
product in terms of its Burgers vector and step: 

b a + bb = b s 

and from (i) and (ii) 

b~la + b~i b = b s + (n a + nt,) ml, 

so the total step in the boundary plane is still (n a +nb) 
layers parallel to the boundary, although if n a and n b 
represented the minimum step heights for ba and b b, 
(n a + no) need not necessarily represent a minimum step 
height for b s. 

Pond & Smith (1977) have considered the ab- 
sorption of crystal-lattice dislocations by grain boun- 
daries in terms of dissociation into primitive DSC 
dislocations. This provides a useful framework for 
some examples to illustrate the step conservation 
principle. It is first necessary to establish the nature of 
the step created on the boundary plane by a run-in, 
undissociated lattice dislocation. This is most con- 
veniently achieved by the following thought experiment 
(Fig. 6). Take a bicrystal containing a planar grain 
boundary and separate the two crystals (Fig. 6b). Run 
a dislocation into the boundary plane from one crystal: 
this introduces a slip step on the crystal surface of 
height b. n, no step is created on the other crystal, 
although the crystallographic planes parallel to the 
boundary may be elastically buckled. This is in 
agreement with (5) and inspection of the illustration of 
a run-in dislocation in Pond & Smith (1977) also 
confirms the hypothesis. 

We can now investigate, in terms of step heights, the 
dissociations of two different lattice dislocations in a 
27 = 5 grain boundary. The dissociations, in the coordi- 
nate system of crystal 1, are 

a a a a 
~[0111=-]-~[0131 +-i-~[0311 +-i-~[0311, (A) 

a a a a __ 
- [ 0 i l 1  = [0/31 + [0/3] + [031] (B) 
2 ~ ~ 

., 

(a) 

,J 
(e) . 

Ny/"/" [ 
(b) 

"t 
(a) 

Fig. 6. Thought experiment to determine the step heights associated 
with a run-in crystal-lattice dislocation. 

and we shall consider the (012) boundary plane, so n = 
[024]. The step vectors and step heights for the various 
dislocations used in this example are given in Table 3. 
Now, if we rewrite the two reactions in terms of step 
heights, assuming that th.e smallest possible step is the 
most stable configuration for each g.b.d., we get 

3 ----1 +2 +2, (A) 

1 4 : - 1 - 1 - 2 .  (B)  

This means that dissociation A will give only the three 
product dislocations with their smallest possible steps, 
but dissocation B must either give a step of +4 (024) 
layers to one of the (a/lO)[Oi3] dislocations, a step of 
+3 (024) layers to the (a/lO)[0"3i] dislocation or an 
additional step of 5 (024) layers, equal to the CSL 
periodicity perpendicular to the grain boundary. Perfor- 
ming the analysis with crystal 2 as the reference frame 
gives the same result, showing that the step-height 
calculations are self-consistent. 

The possibility of the formation of additional 
coherent steps on a grain boundary by crystal-lattice 
dislocation absorption may be important in cal- 
culations of the velocity of a dislocation along a grain 
boundary, since a dislocation which moves mainly by 
glide on a particular boundary plane may have to move 
mainly by climb to pass such a step: this could 
constitute a rate-limiting process for the motion of such 
a dislocation. If a population of dislocations was being 
forced into a boundary during the course of a 
deformation experiment, this would give a mechanism 
for the progressive increase in the sliding resistance of 
the boundary in addition to that derived from elastic 
interactions between g.b.d.'s and lattice dislocation pile- 
ups. 

4. Energetics o f  g.b.d, reactions 

In the previous section, a new constraint on the possi- 
bility of a g.b.d, reaction has been demonstrated. The 

Table 3. Step vectors and heights f o r  the various 
dislocations considered in the crystal-lattice dislocation 

dissociation examples 

hi(024)i h2(042)2 
Burgers vector s (I)' s (z)' planes planes 

a [01 Ill use b Nil 3 0 
2 a 

[0 i 111 use b Nil 1 0 

a [0/311 a a 1--6 ~ [li011 ~ tli012 --1 _+ 5N --2_+ 5N 

a a a 
i--~ [0311~ ~ [101]~ ~ t10112 2 _ + 5 N  1+_5N 

a -- a a 
1-6[0311' i [ i 0 i l ,  ~ 110112 --2 + 5N --1 + 5N 
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direction in which a reaction will proceed is determined 
as the direction of lowering of free energy. For crystal- 
lattice dislocations, this is usually reduced to the Frank 
b 2 criterion which assumes that the energy of each 
dislocation is proportional to b 2, and ignores core- 
energy terms and energies of interaction between the 
dislocations. There is a further approximation in the 
case of grain-boundary dislocations, since no step- 
energy terms are considered either. 

For the two examples given in the previous section, 
the b 2 criterion predicts a 40% energy reduction in both 
cases. If we assume that step energy is proportional to 
step height, as suggested by Pond & Smith (1977), then 
we get a 40% reduction in step energy going in the 
opposite direction for dissocation A and an 86% saving 
for reaction B {assuming that the additional coherent 
step is associated with one of the (a/10)[0i3] 
dislocations}. Clearly, the direction in which the 
reaction will proceed depends on the relative sizes of 
the step energy and the elastic energy of the dis- 
locations. Atomistic calculations, such as those perfor- 
med by Vitek, Sutton, Smith & Pond (1979) do not 
provide a means of separating step, core and elastic 
energy terms for a dislocation, so it is worthwhile to 
consider estimates made from rather simpler argu- 
ments. 

Pond & Smith (1977) have assumed that the step 
energy is equal to the increase in grain-boundary area 
due to the step times the grain-boundary energy which 
was assumed to be isotropic. Furthermore, they 
assumed that the step would be right-angled. We can 
now investigate the effects of removing these two 
assumptions by considering a step such as in Fig. 7. 
The energy of the sloping face of the step is y' and that 
of the principal boundary plane is y; a unit length of 
step will be considered. The energy saving due to the 
loss of area of the principal boundary plane is yh/tan 
p and the loss due to the area of the sloping face of the 
step is 7' h/sin p, so the total step energy is 

sin p tan p 

Fig. 8 shows how this energy varies, per unit step 
height, as a function of p for various values of the ratio 
7':7. For a real grain boundary, this ratio would also 
vary with the angle p, but the values shown give an indi- 
cation of the order of magnitude of the step energy. 

Slope fac h 

t_ 
w~k'Prmcipal boundary plane 

Fig. 7. The form of step considered in the derivation of (8). 

Taking into account variations of the ratio 7' : ? with p 
may lead to a curve of E vs p which displays different 
minima from those shown for constant values of the 
ratio: these will correspond to favoured step configu- 
rations for the dislocation and boundary under con- 
sideration. 

A further energy contribution owing to the existence 
of a step at each g.b.d, core arises for dislocations 
which form an array, since these will be prevented, if 
they have edge character, from attaining their lowest 
energy configuration, Fig. 9. The interaction energy for 
a pair of like edge dislocations at a fixed separation has 
a minimum when the angle t~ (Fig. 9b) is zW2. The force 
on the upper dislocation in a direction perpendicular to 
the line joining the two dislocations is 

f ib  2 sin 2a 
Fa -- (9) 

2~(1 -- v) r 

"6 

~z 6 

w" 
4 

~ A  
0 . J l  

o lo 20 ~o 1o &o ~o ~o ~o ;o 
p, degrees 

Fig. 8. Energy of a unit length of step of unit height, in units of 7, 
for varying step inclination and slope-face energy. The ratios of 
slope-face energy to principal boundary-plane energy are (A) 1; 
(B) 1.5; (C) 2; (D) 3. 

: Lh / 
3h I 1 

1~7 III 
;Boundory plone 1/ '~_ 

(a) (b) 
Fig. 9. (a) Steps at dislocation cores prevent the g.b.d.'s from 

achieving their minimum-energy configuration in an array. (b) 
Definition of h, a and fl for finding the energy associated with 
such a displacement. 
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The work done against this force in removing the upper 
dislocation from its minimum-energy position to some 
other value of a is 

/ /b 2 t ~ sin 2 a  

J --da (10) 
E s ( A )  - -  27r(1 -- v) r 

/ /b  2 
7t 

cos 2a 

4zc(1 -- v )  r 

//b 2 sin 2# 

4zr(1 - v) r 
(11) 

If fl is a small angle (step height is small compared with 
dislocation separation), we can substitute 2 h / r  for sin 
2fl, giving 

# b  2 h 
E s ( A )  - -  2Zr(1 -- V) r E. (12) 

Now if the dislocation was at the centre of an infinite 
array, this energy would be increased to take account 
of interactions with all the other dislocations in the 
array and 

/ /b E h ~ 1 (13) 
Es(A) 

2n(1 - v) r 2 ¢--- n 2' 
- -QO 

which is equal to 

7~//b 2 h 

E s ( a )  - 6(1 -- v) r 2" (14) 

This is the energy associated with the step at the core 
of the central dislocation in the array: it is only correct 
if all the dislocations have identical steps and if b lies 
parallel to n; for other cases, the step energy may be 
more, less or negative. In particular, a lower-energy 

structure may be produced by a mixture of step heights 
giving an average, taken over all the dislocations in the 
array, of zero. 

The elastic energy of a dislocation with inner cut-off 
r~ and outer cut-off r o is 

#b 2 
E e - -  [ l n ( r o / r ~ ) -  1] (15) 

4~z(1 -- v) 

and the extent of the strain field of a dislocation in an 
array is roughly equal to the array spacing (Van der 
Merwe, 1950), so substituting r for r o in (15) gives an 
estimate of the elastic energy of a dislocation in an 
array. It can now be seen that the contribution of step 
energy increases as the array spacing decreases, and 
the elastic energy decreases. Thus, for small dislocation 
spacings in arrays, the step energy becomes 
increasingly important in determining the direction in 
which a dislocation reaction will proceed, and Frank's 
b 2 criterion becomes correspondingly unreliable. 

As an extreme example for dislocations not belong- 
ing to arrays, consider again Fig. 4: the dislocation in 
this case may have a step of +5 or - 6  (1 i3)1 layers (as 
measured in grain 1) and has a Burgers vector of 
( a / l l ) [ l [ 3 ]  r A possible step form for a dislocation 
with twice this Burgers vector is a type 3 step, Fig. 10. 
For step-energy calculations, it is convenient to use an 
effective step height which may be defined as the 
average of the step heights measured with respect to 
grains 1 and 2, so a type 3 step for example has an 
effective height of zero. We can now write the reaction 

2a a a 
- - [1131  = [li31 + - -  [113] 
11 "]-]" 11 

and in A1 the effective steps are 

0 +6.71 - 6 . 7 1  A. 

[ 001 ]2 \ {  ~3,u]2 " ' " ' ~  A O A O A O A O A 
O A O ;, O ;, O A O 

O A O A O A O A O 
A O A O A O A O A 

[00[ l~/  [ [ 10"i'~/ A O A O A O A O A 
O A O & ~, .." ." = 

"-- ~ -" ~ -~ ~ ;, O A O A O A 
O A O A O A O A O A O A 

A O A O A O A O A O A O 
A O A O A O A O A O A O 

O A O A O A O A O A 0 A 
O A O A O A O A O A O A 

A 0 A 0 A 0 A 0 A 0 A 0 

; ' 0 0 ;' 0 0 ;' 0 0 ~  0 ~ 0 / 

o 

" " ~ " o . . . .  

^ o ^ o ^ o "v., o ^ o ~ o 
^ o ^ o ^ o ^ o ,, o ,., o 

o ^ o ^ o ^ o ^ o ^ o ^ 
o ^ o ,,  o ^ o A o ^ o ;, 

^ o ^ o ^ o ,", o ;, o ^ o 
^ o ^ o ;, o :, o ^ o :, o 

o ^ o ^ o ^ o A o :, o ^ 
A ~ A ~ & ~ A 0 A 0 A 0 A 

Fig. 10. (2a/11)[ 1 [3] 1 dislocation in a (I i3)l, X = 11 grain boundary between two f.c.c, crystals. 
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From (15), with inner cut-off 5, outer cut-off 1000 A 
and constants appropriate to A1, the energy balance for 
the reaction comes out as 

8.05 x 10 -1° =~ 2.02 x 10 -l° + 2.02 x 10 -l° J m-k  

Now, with an isotropic form of (8) and a typical value 
for the grain-boundary energy of AI, 0.625 J m -2 
(Inman & Tipler, 1963), and with the trigonometrical 
term equal to 0.5, the step-energy balance is 

0 -¢= 2.20 x 10 -l° + 2.20 x 10 -a° 

and adding the two energy balances gives 

8.05 x 10 -l° ¢: 4.22 x 10 -l° + 4-22 x 10 -l° J m -1, 

i.e. the reaction will proceed in the direction of asso- 
ciation, even though the b 2 criterion predicts a 
dissociation. The energy difference is, however, very 
small and in view of the approximations made, no great 
reliance can be placed on this prediction, which is used 
here merely to suggest how marginal the energy 
balance may be for a g.b.d, reaction, since step energies 
and elastic energies for these dislocations may be of the 
same order of magnitude. 

more easily observed in conventional transmission 
electron microscopy with in situ experiments. 

6. Conclusions 

(i) Two methods of step-height calculation have been 
given: possible step heights are related to the coin- 
cidence geometry of the bicrystal, but not simply to the 
angle of the Burgers vector to the boundary plane. 
(ii) The necessity for step-height conservation has 
been demonstrated for g.b.d, reactions, and it has been 
shown that minimum step heights are not always 
maintained for all the dislocations involved in a 
reaction. 
(iii) The energies associated with g.b.d, core steps 
have been estimated and it has been shown that: (a) an 
array of dislocations may lower its energy by con- 
taining dislocations of differing step height; (b) Frank's 
b 2 criterion may be unreliable for g.b.d, reactions. 

The authors thank Professor Sir Peter Hirsch FRS 
for provision of encouragement and facilities, and Drs 
R. C. Pond and W. A. T. Clark for useful and stimu- 
lating discussions. 

5. Discussion 

The fact that it may be energetically favourable or even 
crystaUographically necessary for dislocations of iden- 
tical Burgers vector to embody different steps is new, 
and may have interesting consequences. The motion of 
g.b.d.'s is accompanied by shuffles of atoms across the 
boundary plane, when the g.b.d, has an associated step 
(see, for example, King & Smith, 1979), and the 
number of such shuffles is related to the step height. It 
is possible that this effect will increase the Peierls stress 
for motion of g.b.d.'s by glide, and thus dislocations of 
identical Burgers vector may respond differently to an 
applied stress if they have different steps. 

The experimental measurement of step heights on the 
scale necessary to distinguish between the various 
possibilities or a g.b.d, is extremely difficult, but might 
be achieved by means of lattice-imaging transmission 
electron microscopy: we look forward to some interest- 
ing results from this new field of experimentation. 
Effects such as differing mobilities may, however, be 
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